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Abstract

VORPAL is a new plasma simulation code designed for maximum flexibility through use of advance C++ tech-

niques. Through use of inheritance, VORPAL incorporates multiple models for the plasma and electromagnetic fields.

The plasma models include both particle-in-cell and fluid models. Through C++ meta-template programming a single

code can be used to simulate one-, two-, or three-dimensional systems with no loss of performance. VORPAL can also

be run in either serial or parallel, with the latter using a general domain decomposition. A new fluid algorithm that

allows for regions of zero density was developed and incorporated into the code. VORPAL simulation results for the

generation of laser wake fields through laser–plasma interaction are presented.
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1. Introduction

From the earliest days of computers, computation has played a major role in plasma research. Since

then, plasma computation [1,2] has made great strides, with advances in algorithms, simulation of reduced

models and models for slow plasma phenomena, and usability. The goal of the present paper is to describe a

new plasma simulation code, VORPAL, that has been designed from the outset for greater versatility,

through use of Object Oriented methods along with use of advanced features in the C++ programming
language. Our code incorporates many of the ideas of the OOPIC code [3,4], a Particle-In-Cell (PIC) code

that can easily incorporate different types of electromagnetic (EM) fields, particle dynamics, particle

boundaries, field boundaries, etc. Many of these ideas are also present in the Fortran 90 codes OSIRIS [5]

and 3D codes based off the GCPIC algorithm [6].

Our goal for VORPAL was to develop a new framework of classes that would take the maximal ad-

vantage of Object Oriented methods without sacrificing performance. As part of this effort, we added
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further generalizations to the VORPAL framework that are not available in other object-oriented plasma

codes. The first of which is VORPAL can be run in any number of dimensions and the number of di-

mensions can be set at run time. It has a flexible domain decomposition algorithm which allows for any 3D
domain decomposition that is comprised of a collection of slabs. The framework allows both fluid and

particle representations of the plasma and these representations can be used independently or together to

perform hybrid simulations. Since we are interested in the interactions of high-intensity laser pulses with

plasmas, we developed a new fluid algorithm which can model regions of zero density so we can deal with

the plasma blow outs. Our particle model uses policy class methods to support multiple types of particle

dynamics easily and efficiently. To make sure that these new features are implemented lower in the class

hierarchy so that any new models added to the code would automatically inherit them, we choose to

construct the low level physics objects and the interfaces in the framework ourselves rather than building
VORPAL on top of an existing framework. However, we recognize that one should not reinvent the wheel

unless necessary. So we make extensive use of math objects from the OptSolve++ libraries from Tech-X

corporation [7] and container objects from the Standard Template Library [8].

The VORPAL framework is organized in a manner that reflects its object-oriented design. One package

(subdirectory and associated library) called vpbase contains all of the basic interfaces such as the interface

for the electromagnetic field that has methods to update the field and obtain the value of the field at a point.

All the objects in the code interact through the interfaces defined in vpbase. The next layer of packages

contain classes which implement the behaviors for the methods in the interface classes, including those for
the EM fields, particles, fluids, messaging, and I/O. Finally, VORPAL has a package for the domain, which

combines objects to create a simulation. In this way, VORPAL has a package hierarchy without mutual

dependencies. This simplifies reuse of the code libraries.

In laser–plasma interactions the great disparity in scales leads to large computational requirements. For

example, with a laser pulse commonly containing 50 laser oscillations and the need for simulating regions

that are multiple pulse lengths in each direction, it can be necessary to have simulations of 10,000 cells along

the direction of propagation and 500 transverse. This results in 5� 106 cells for a 2D simulation and

2:5� 109 cells in 3D. Thus, to obtain results rapidly, one often does most simulations in 2D, with rarer 3D
simulations, often with scaled parameters. In the usual methodology, one writes separate 2D and 3D codes,

or one has only a single 3D code, which for 2D runs is restricted to a small number of cells (2–4) in the

symmetry direction. Unfortunately, this is computationally more intensive than a 2D simulation.

Our solution to these problems was to build an arbitrary-dimensional code that depends on recursion;

the nested loops of a multiple-dimensional field update are constructed through a function calling itself for

each loop, with the recursion ending at the dimensionality. However, function calls can be computationally

expensive, so it is desirable to have this recursion inlined. However, this cannot be done for recursive calls

of the same function. To effect this we use the template mechanism of C++. This allows us to have each of
the nested function calls be to a function of a different template parameter, which becomes a different

object-code function, and so inlining is possible. Thus VORPAL has arbitrary dimensionality without the

loss of efficiency associated with such recursion, providing the same performance that would be achieved

through the use of nested loops. This simplifies maintenance, as one no longer needs to maintain a separate

code for each dimensionality.

VORPAL achieves parallelism through domain decomposition. The VORPAL decomposition is more

general in that domain boundaries need not line up in any particular way. Instead, each domain is a slab,

and so the full simulation region is then any region that can be created through combining slabs. The
messaging, a bit more complex than usual, is determined by finding the intersections of each domain with

the extended region (that includes guard cells) of all neighboring domains.

Due to excessive virtual function calls, traditional inheritance is not an efficient way of implementing

multiple particle models into a code. VORPAL has a single particle class, whose dynamics are determined

by a separate class, referred to as the policy class. The update methods in the policy class are not virtual and
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therefore can be inlined away. Finally we note that in VORPAL, plasmas can also be simulated by fluid

representations. For this purpose, we have developed a simple algorithm applicable to cold plasma that

advects the velocity field, then updates the density through a flux corrected transport scheme. Since we are
advecting the fluid velocity rather than updating the fluid momentum, we can model regions of zero density.

VORPAL has now matured and is being used to study a variety of plasma phenomenon. The original

target for VORPAL was to study Laser Wake Field Acceleration (LWFA) [9]. Firing an intense laser pulse

into a plasma with pulse length near the plasma wavelength can generate plasma oscillations behind the

pulse having electric fields on the order of 100 GeV/m. With its current capabilities VORPAL has been used

to study the generation of laser wake fields and the optical injection of electron beams into these wake fields

[10]. The above-mentioned fluid algorithm allows hybrid simulations of optical injection to be done where

the beam is modeled with particles, and the wake field is modeled with a fluid. For such simulations, the
laser propagates in from vacuum, and the ponderomotive force from the laser pulse can completely blow

out all the plasma from the region of the laser pulse, so we had to develop a fluid algorithm that can deal

with zero density regions to use in these hybrid simulations. Recently, VORPAL has been used to to study

electron Bernstein heating in fusion physics. Preliminary simulations have been done and we are planning

on adding new physics models to assist in this endeavor.

The rest of the paper is organized as follows. In Section 2, we discuss the life cycle of objects in the code

and the organization of the classes in the code framework. In Section 3, we explain our method of arbitrary-

dimensional coding that allows us to specify the dimension of the simulation at run time. Section 4 details
the method we used to provide a general 3D domain decomposition. All of the available physics models and

their implementations are discussed in Section 5. Tests of the code to show it is producing correct physics

are given in Section 6. In Section 7, we discuss the results of a hybrid fluid-PIC simulation of LWFA made

possible by VORPAL�s object-oriented features. Finally in Section 8, we summarize our work and discuss

some the future plans and possible new features of VORPAL.
2. Architecture and code techniques

The goal of a plasma simulation code is to evolve a numerical representation of a plasma in an elec-

tromagnetic field. Thus, the basic steps are: (1) creation and initialization of the objects that comprise the

plasma, (2) update each of these objects at each time step, and (3) output the plasma state periodically, both

for visualization and for state preservation for restarts. The architecture of any plasma simulation code

must enable these steps.

The VORPAL architecture incorporates the strict layered approach, in which no package can depend on

any software layers at its level or above (see Fig. 1). This eliminates circular package dependencies. At the
bottom of the hierarchy are classes that support basic mathematics and other needed objects that are in-

dependent of the physics involved. These are independent of other VORPAL libraries and could con-

ceivably be reused outside of a plasma or fluid simulation code. On top of that is a framework layer

consisting of the single package vpbase, in which the basic object interfaces are defined and where some

basic implementations are provided. The next layer up consists of implementation classes. An example is

the set of classes that implement the finite-difference-time-domain integration of the EM field on a Yee

mesh. At present, VORPAL contains five basic implementation packages, those for EM fields, particles,

fluids, I/O, and messaging as needed for parallelism. The next package up is the combining or control
package, which contains the class definitions for the domain objects, which hold one or more of the various

implementation objects. Finally, the top software layer consists of the package containing the executable,

which creates a domain object and runs the execution loop, and two packages of utilities for post pro-

cessing. One contains executable programs for data analysis and the other is a collection of scripts used to

run all the executables in the top software layers and visualization programs written for IDL and OpenDX.



EM I/O

vpbase: framework interfaces (particles, fields, EM,
messaging, I/O), datastructures

vpstd: math functions, creator maps, physical constants,
fluid/plasma independent

txmath: parsers, containers, formulas

vpfluid: fluid
implementations
(simple and
Zalesak FCT)

vpem:
implementations 
(Yee, external
fields)

vpptcl: particle
implementations
(Boris, EM, free)

vpmsg:
implemementations
(MPI)

messaging vpio:
implemementations
(HDF5)

vorpal: simulation and
merging excutables

vputils:
particle culling, slab extraction

run, merge scripts, vpdata: data analysis
and reduction tools

vptrol: domain object, which can contain any of the objects below

Fig. 1. Software layers in VORPAL libraries.
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In this section, we discuss the simulation life cycle, then the architecture, giving a brief discussion of each
of the software layers. We also provide a final subsection where we note some of the coding techniques used

in VORPAL. A full listing of all VORPAL classes with on-line documentation is available at [11]. As a

name-space mechanism, we prefix all VORPAL classes with ‘‘Vp’’.

2.1. Simulation life cycle

As noted in multiple places [1,3], the simulation life cycle is quite simple, consisting of initialization,

dynamical evolution, and termination. In the initialization, a domain object is created. At the setting of its
parameters, the domain object is told what it contains, and thus it can create each of its needed objects, such

as fields, particles, boundary conditions, etc. Then the evolution loop begins. In the evolution loop, one

updates the particles, charged fluids, and electromagnetic fields. Each of these updates can be multifaceted.

For example, the field update in the interior integrates the equations of motion, while at the edges, it can

involve the setting of a boundary condition. Periodically, a complete set of data is output, both for detailed

examination and for run restoration, e.g., in case the computer fails. Finally, the evolution loop completes,

the last data file is output, and the domain object is destroyed. In the process of the last step, the domain

object destroys each object that it contains.
For simplicity, the only existing domain object in VORPAL assumes that the particles and charged fluids

interact through only the electromagnetic field. With this assumption, one can simply update the particles

one set at a time, then the charged fluids, or vice versa. After that the fields are updated. The order of

update within the particle sets or fluid sets is unimportant. Provided each individual update is second order

in the time step, Dt, then so is the update of the entire loop.

2.2. Coding techniques and the basic classes

As noted above, in the lowest level packages are the classes that are independent of the physics. We

describe just of few of these here, as these techniques may be useful in the code development of other

projects.

The Tech-X OptSolve++ library [7] provides a useful package of classes. In particular, the TxAt-

tributeSet and TxHierAttribSet can be used to describe any of the objects within VORPAL. A

TxAttributeSet is a collection of named integers, doubles, strings and vectors of those types. A
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TxHierAttribSet derives from the TxAttributeSet and adds a vector of TxHierAttribSet�s.
Thus, a TxHierAttribSet has a recursive ownership chain. Any object (e.g., double, vector of doubles,

etc.) within a TxHierAttribSet can be set or retrieved by name, through methods such as getPa-

ram(string). The recursive ownership chain allows a single TxHierAttribSet to define a domain

object, with its owned TxHierAttribSet�s describing each of the domain�s owned objects, etc.

An important feature of the TxHierAttribSet objects is that they have methods for setting them-

selves through an XML-like string. Hence, the VORPAL input file simply contains such an XML-like

string. Parsing the input file consists of reading the entire input file into one string, then giving that to a

TxHierAttribSet for its initialization.

For example, the section of the input file for a cold fluid that is initially uniform may look like

<Fluid electronFluid>

kind ¼ pcZalCRFluid

charge ¼ -1.6022e-19

mass ¼ 9.109e-31

<InitialCondition InitCond0>

lowerBounds ¼ [ -1 -1 -1]

upperBounds ¼ [100 100 100]

kind ¼ constant

indices ¼ [0]

amplitudes ¼ [1.5e-18]

</InitialCondition>

</Fluid>

For use within VORPAL, we have further specifications of the format of the XML string. The opening

tag for the above case means that the object to be created derives from the interface corresponding to the

Fluid object of name electronFluid. This attribute set contains a string named kind with the value
‘‘pcZalCRFluid’’, which denotes that we are to create a VpPCZalCRFluid object, which uses the Fluid

interface. Vectors of integers determine the upper and lower bounds of the region to be initialized. The two

doubles named charge and mass with the values �1:6022� 10�19 and 9:109� 10�31 denote the properties

of the fluid. The lines between the InitialCondition tags describe the initial condition of a uniform

fluid density of 1:5� 1018 m�3, which is to be applied at startup.

The lowest package in the VORPAL hierarchy is the vpstd package. This package contains the

MakerMap collection of classes, which allow one to construct objects from a string defining the object. It

contains macros for vector operations such as cross products and dot products. It contains an object that
holds the appropriate physical constants, such as l0 and �0 of Maxwell�s equations. Finally, the vpstd

package contains a set of space–time functions that can be used for initialization or for setting boundary

conditions.

In the attribute sets used to handle the inputs into VORPAL, an object is described by its interface name

and a string that is associated with the specific-derived class for the object. Normally a series of conditional

statements would be used on the string during the actual creation of the object. This method is cumber-

some, especially when one begins to add new derived classes to represent new models or algorithms.

VORPAL�s solution to this involves a group of classes that create objects given a string.
The first of these classes is VpMaker. VpMaker is templated over two classes, B and D where D is

derived from B. The maker class has a method, getNew(), that creates an object of type D and returns a

pointer of type B to that object. A second class, VpMakerMap, which is templated over the base class,

contains an associative array of VpMaker�s keyed by the string. It also has a getNew(std::string)

that accepts a string as an argument. Upon receipt of the string, this method searches through its
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associative array until it finds the correct VpMaker and then calls the getNew() for that maker. The

VpMaker class is designed so when a maker is constructed, it registers itself with the associative array of the

correct VpMakerMap. Thus, once a new class is created using a specific interface, all that has to be done to
make it available is to create a VpMaker for the new class.

For each basic interface in VORPAL there exists an associated maker map. By calling the getNew()

method, which takes the kind keyword mentioned above as an argument, the correct type of object is

created with a pointer of the right interface. Using the above example of an electron fluid object, the kind

key word defines what type of fluid object to create. The following code determines what type of fluid to

create and then generates a pointer to an object of that type.

string kind ¼ attribs.getString("kind");

VpFluid<FLOATTYPE, NDIM> *crf¼
VpMakerMap<VpFluid<FLOATTYPE, NDIM> >::getNew(kind);

The attribs object is the hierarchical attribute set that was created from the input file. The getNew()

method creates a default object whose type is determined by the kind key word and then returns a pointer

of type VpFluid. The maker map is templated over the interface class so only one maker map class needs

to be implemented. The different types of maker maps come from different values of the template parameter

B. Since different models sharing the same interface may have very different input parameters, all the in-

terface classes must have a default constructor. Any details, parameters, or references needed by the class
are set later with other methods.

VORPAL often needs to calculate various space–time functions that depend on internal parameters,

such as a function representing the electric field of a laser pulse, which has a length, wavelength, etc. We

treat these abstractly as space–time functor�s, objects for which the operator() method has been

overloaded to take a FLOATTYPE array that represents a position and a FLOATTYPE that represents time.

The base class is VpSTFunc, which defines the interface through having an abstract operator() method.

This interface is then implemented in a number of derived classes for particular functions, each of which

can be constructing by string using the above VpMakerMap technology. The internal parameters of the
function are then set through a TxHierAttribSet.

2.3. Framework classes

VORPAL uses an object-oriented design, where the physics, numerics, and other needed elements are

treated as objects. Base-class interfaces determine the information that needs to be passed between different

objects in the simulation, thus determining the basic interactions among objects. Common data structures

and algorithms (e.g., interpolation) are implemented in the base classes. The use of message passing and I/O
objects through the base-class interfaces is implemented once in the base classes. This makes the imple-

mentation of these common objects and usages available to the derived classes, where specific physics,

messaging, and I/O are implemented. This reduces maintenance and allows for the easy addition of new

models and features.

The vpbase library contains the basic interfaces for the classes in the code and general abstract data

objects that are common to the different models. The two principal entities in a plasma simulation are the

particles and the electromagnetic field. Three interfaces are defined in vpbase for these types of objects.

VpEmField provides the interface for electromagnetic fields, VpFluid is the interfaces for plasma species
represented by a fluid model and VpSpecies in the interface for plasma species represented by a particle

model. Other interfaces for communication and input/output are also found in this library. Data objects,

such as the VpField class, which represents an object that has a known value or values at every point on

the computational grid, are found here as well as other classes including the grid and support classes for the

decomposition.
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2.4. Implementation classes

The implementation of the various models for the electromagnetic field is found in vpem. There are two
interfaces for electromagnetic models in vpbase, the basic VpEmField and the more specific VpGri-

dEmField, which is a electromagnetic field whose values live on the grid. Since a grid electromagnetic field

represents a self-consistent field, a simulation is limited to only one. However, any number of external fields

can be used. The vpem library includes classes to represent both constant external fields and fields that

depend on specific functions of space and time.

The plasma models are separated into two libraries, vpfluid which contains the fluid models and

vpptcl which contains the particle models. The fluid library contains a simple flux limited version of our

zero-density capable fluid model as well as a more sophisticated flux corrected version of the model. There
is only one class for the particle models, but it supports a variety of different dynamics based off the policy

class methods described in Section 5.2.

The vpio library contains classes to manage the input and output of data from VORPAL simulations.

All input and output of data from VORPAL simulations is through the VpIO interface. At present there is

only one derived class for this interface, a class that outputs the data into an HDF5 [12] file with a

VORPAL-specific format. Writing to or reading from HDF5 files of a different format (e.g., conforming to

emerging standards for storing simulation data) could be implemented in different classes, with no change

needed for the basic framework objects or the physics implementations. Other data formats such as net-
CDF could be added by developing a input/output class that inherits from the VpIO interface.

Messaging between processors is managed by classes contained within the library vpmsg. Messages

between processors are done through the VpMsgCntr interface. The message center contains classes that

are responsible for sending and receiving the actual messages. Here the only implementation (in a derived

class) at present is through the standard Message Passing Interface (MPI). Other communication methods,

e.g., shared memory or MPI through a different API, could also go into this package. In addition, messages

can be passed from a processor to itself for, e.g., the implementation of periodic boundary conditions. This

is done with the self messaging classes in vpbase, as it is generic.

2.5. Domain classes

The vptrol software layer contains the VpDomain object, which owns virtually all other simulation

objects and is responsible for their creation, deletion, and updating. Before the domain object is created,

two attribute sets are created that contain all the information that tells the domain what objects it contains

and the details for those object. The first attribute set contains all the command line arguments from the

actual system call to VORPAL, and the second contains the information from the input file. There are some
simulation parameters, such as the number of time steps to take, that may be redundant. In this case,

VORPAL defaults to the value specified at the command line. The domain object has methods that allow it

conduct all of the stages of the simulation life cycle discussed in Section 2.1. All of these methods such as

the update method or the method that dumps the data to an output file, proceed up the ownership tree by

delegation, with each object calling the update method of the objects it owns. Once the simulation is fin-

ished the domain object destroys all its owned objects.

2.6. Executable and utility packages

The three top directories in the code hierarchy are the vorpal directory, which contains the VORPAL

executable, the vpdata directory, which contains utilities written in C++ for post processing data, and the

vputils directory, which contains visualization scripts. The executable reads the input file into a

TxHierAttribSet object, the in-memory, hierarchical representation of the system to be constructed. It
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then constructs the domain object and runs it through the simulation loop. The vpdata directory contains

executables for combining the output from multiple processors into a single file and for extracting samples

of field and particle data from the combined files. The vputils directory contains sh, OpenDX, and IDL
scripts to post process and visualize data generated by VORPAL.

2.7. Other features

Classes in VORPAL are templated over precision. This allows us to set the precision of the simulation at

run time. Normally one would run in float precision since float precision takes half the memory as double

precision and floating point arithmetic takes less time on many processors. There are situations where

double precision is needed. In highly relativistic simulations the difference between the velocity and the
speed of light could be smaller than float precision. On some processors, float precision arithmetic is sig-

nificantly slower than double precision arithmetic.

In order to study the physics of highly relativistic systems, in particular beam physics, we have incor-

porated a moving window [13,14] into VORPAL. The user sets the Cartesian direction for the moving

window and the distance at which the moving window will start. During the simulation, when a light pulse

would have propagated from the front edge of the moving window direction to a distance set in the input

file, the moving window begins, shifting the simulation region at the speed of light. At each crossing of a cell

by the imagined light pulse, the grid lower bound is incremented by a cell width, fields are moved over one
cell, particles now outside the grid are removed, and new quiet particles and fields are loaded in at the front

edge of the simulation. This allows the user to study the propagation of a relativistic beam by following it as

it propagates, rather than requiring a region that is long in the direction of propagation. As with the

domain decomposition, the code for the moving window is implemented in the base classes so any new

objects added to the code will inherit the moving window.

To achieve our goal of making VORPAL work on multiple UNIX platforms (including Mac OS X), we

make use of the GNU project�s automake and autoconf utilities. These tools allow one to create a configure

script that when run, checks for the location and availability of libraries, compilers and other software that
VORPAL needs to compile. The script then generates Makefile�s appropriate for the configuration of the

build machine. We have also compiled VORPAL on Windows platforms with the Metrowerks compiler.
3. Arbitrary-dimensional coding

Templating over dimension allows one to support 1D, 2D, and 3D simulations with a single code base.

The dimension of the simulation does not have to be specified until run time; this allows one to simulate a
problem in 2D rapidly to get qualitative results, and then with no changes to the input file move to a 3D

simulation for more detailed results.

Several challenges exist in developing an arbitrary-dimensional plasma physics code. The first is the field

updates. Normally in a code where the dimension is fixed, the fields would be stored as multi-dimensional

arrays and the updates would be done using nested loops. This cannot be done for a arbitrary-dimensional

code as at the outset the dimension of an array and the number of nested loops is unknown. The other

challenges are the interpolation of field values and the weighting of particle currents to the grid. Inter-

polation varies because the number of field values to interpolate differs in different dimensionalities. Two
fields are required for one dimension, 4 for two dimensions, and 8 for three dimensions. Weighting the

particle currents presents a problem due to the relation of the currents with the grid. The current along a

simulated direction is at the midpoint of the cell edge in that direction. Weighting particle currents along a

simulated direction requires the determination of the particle current crossing the cell mid-face orthogonal

to that direction and amounts to nearest-grid-point weighting along the direction of the current and linear
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weighting in the other directions. In contrast, a current along a non-simulated direction exists at the cell

corners, and linear weighting is used in all directions.

To solve the problem of field updates, a combination of recursion and template meta-programming is
used. An object is created to update the field one cell at a time. This object can be moved to any location on

the grid by incrementing an index that corresponds to its location on the grid. The updater object is then

walked through all points on the grid by a ‘‘walker class’’ that uses recursive function calls.

The updater objects who are responsible for updating the field values at a cell use a method called

updateCell(). Typically this object represents the finite differencing of some differential equation

that represents the dynamics of the object in question. To represent the components in this finite

difference, we developed a generalization of an iterator [8], that allows us to deal with the problem of

indexing an array in an arbitrary dimension. This iterator acts as an index to some location on the
grid. The updater object contains a group of iterators for all the independent fields, a vector of weights

for those iterators and another iterator for the dependent field located in the correct positions to re-

create the finite difference equation. For linear finite difference equations a generic updater class exists.

However, for non-linear models, such as the fluid model, updater objects specific to the model must be

used.

Once one cell is updated, the updater object needs to be moved to the next cell. This is done using a

bump() method. The analogy in one dimension is the incrementing or decrementing of the index of an

array. In a multi-dimensional code the bump takes a direction and an amount to increment as arguments.
This allows the updater object to be bumped to any location in the grid. The iterators also have these

bump methods, so whenever an updater object is bumped to a new location, the iterators it owns are

bumped in the same direction by the same amount. The iterators contain a 1D index that corresponds to

its location on the grid. By knowing the strides of the grid in all dimensions, the iterator knows how

much to increment the index to produce the correct index displacement corresponding to an increment in

any direction.

To move the updater objects over a grid of arbitrary dimensions, we create ‘‘walker’’ classes that use

recursion and template specialization to walk the holder objects through the grid. These classes are tem-
plated over dimension, direction, and the updater class. They have an update method which recursively

calls the update method for the lower dimension. We start by defining the walker class for a general di-

mension and direction. This includes the recursive call to the walker class of next lowest direction.

template<int DIM, int DIR, class UPDATER>

class VpWalker {

static inline void walk(VpSlab rgn, UPDATER updater) {

// Do loop over next direction

for(i¼0; i<rgn.upperbound[DIM-DIR]; i++) {

VpWalker<DIM, DIR-1, UPDATER>::walk(rgn, updater);

// Bump to the next row

updater.bump(DIM-DIR);

}

// Bump back to the beginning

updater.bump(DIM-DIR, -rgn.upperbound[DIM-DIR]);

}
}

The walker is then specialized in the first direction to actually call the update method of the updater
object. Since everything is inlined, the recursive functions are removed when sufficient compiler optimi-

zations are called. The compiler is effectively creating the needed nested loops for us.
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template <int DIM, 1, class UPDATER>

class VpWalker {

static inline void walk(VpSlab rgn, UPDATER updater) {

// Do loop over next direction

for(i¼0; i<rgn.upperbound[DIM-1]; i++) {

updater.updateCell();

// Bump to the next row

updater.bump(DIM-1);

}

// Bump back to the beginning

updater.bump(DIM-1, -rgn.upperbound[DIM-1]);

}
}

Although the interpolation of the fields requires a different number of fields with different weights for

different dimensions, it follows a pattern that lends itself to recursion. For example, the interpolation of the
electric field to the location of a particle in two dimensions is given by

E ¼ ð1� wiÞð1� wjÞEi;j þ wið1� wjÞEiþ1;j þ ð1� wiÞwjEi;jþ1 þ wiwjEiþ1;jþ1; ð1Þ

where wi and wj are the distance from the point i; j to the particle. Eq. (1) can be rewritten as follows:

E ¼ ð1� wjÞ ð1
�

� wiÞEi;j þ wiEiþ1;j

�
þ wj ð1

�
� wiÞEi;jþ1 þ wiEiþ1;jþ1

�
: ð2Þ

This is just an interpolation in the ith direction followed by an interpolation in the jth. This result gen-

eralizes to three dimensions allowing the interpolation to be done with recursion and meta-template pro-

gramming in a similar manner as the field updates.

For the current explicit electromagnetic implementations in VORPAL it is assumed that system itself

is 3D but the physical quantities do not vary in the remaining directions. This means that regardless of
dimension, vector quantities such as the currents and the electromagnetic fields always have three

components. This complicates efforts to develop an arbitrary-dimensional method to weight the cur-

rents. We use the current weighting scheme of Villase~nor and Buneman [15] to calculate the currents in

the directions that lie along simulation dimensions. Since this method depends on determining how

much charge enters or leaves a cell, it cannot be applied to currents in the symmetry directions. In those

cases, the currents are determined by the product of the charge density at the grid point times the

velocity at that point. So the weighting for the current in the z-direction is quite different between a 2D

and 3D simulation. To deal with the need for two different weighting schemes, we use switch and
case statements to deal with each dimension individually. It may be possible to deal with this problem

in an arbitrary-dimensional matter, however it was expedient not to pursue this at the time. There are

only three cases to deal with, and the compiler removes the switch and case with sufficient

optimization. We may return to this problem at a later date to try and find a more elegant

solution.

The advantage of the VORPAL arbitrary-dimensional methodology is that one has a single code base

for all dimensionalities, with little dimension-dependent code. This reduces maintenance requirements.

The use of recursion usually implies a loss in performance due to excessive function calls and repeated
switch statements can also adversely affect code speed. By examining the object files produced by the

compiler, we have confirmed that the use of template specialization and sufficient compiler optimizations

will inline all the recursive function calls and switch statements used in our arbitrary-dimensional coding

methodology.
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4. Parallelization

VORPAL is designed to run as both a serial code for single-processor workstations and as a parallel
code for systems that support MPI. As part of our general philosophy of flexibility, we have developed a

general 3D domain decomposition. This general domain decomposition allows for static load balancing

and makes it possible to incorporate dynamic load balancing in the future. To minimize the overhead that

occurs with messaging, VORPAL overlaps computation and communication as much as possible. The

abstract interface for message passing in VORPAL is defined low in the class hierarchy, and message

passing is done low in the hierarchy through this interface. This means when new classes are added, they

will automatically inherit the message passing from the appropriate base class.

Load balancing is an important issue for PIC codes since the particles are not necessarily distributed in a
spatially uniform manner. For example, in a simulation of a particle beam propagating through an ac-

celerating structure, the particles are concentrated in the vicinity of the beam. Also the computer being used

may have processors of differing capability. This is especially true of Beowulf clusters, as they become

upgraded over time. If new processors are added to a Beowulf cluster over time, Moore�s law tells us that

there will be a significant imbalance in the computational power between the old and new processors.

Most mesh-based codes including VORPAL use a data parallel decomposition scheme to parallelize the

simulation domain [16]. This means each domain is assigned a certain number of grid points and particles

for which it is responsible for updating. A typical decomposition of a mesh-based code is done by sepa-
rating the domains by cutting through the simulation region using planes. A typical 2D domain decom-

position of a 3D cubic region is shown in Fig. 2. The particles in VORPAL are distributed among the

processors by assigning a particle to the domain that owns the grid cell in which it lives. The total com-

putational load for the domain is then load balanced. This is referred to as unitary load balancing [17].

A more general decomposition than the one in Fig. 2 is needed for load balancing. To balance the

computational load from the four domains, the time the first domain needs must be matched to the time the

remaining three domains need. This implies three conditions for equality of the computing time used by

each domain. However, there are only two movable planes, thus insufficient freedom for satisfying the three
conditions.

By using a more general decomposition where the planes separating the domain do not have to extend

completely across the simulation region, load balancing is now possible. In Fig. 3, the decomposition planes

perpendicular to one direction cut the entire region, but in the second direction they break at each of the

planes of the first direction. Having three movable planes to satisfy three conditions makes load balancing
Fig. 2. Standard 2D decomposition of a 3D cubic region.



Fig. 3. Fully general 2D decomposition of a 3D cubic region.
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possible. One method of achieving the decomposition shown in Fig. 3 is to bisect the simulation region and

the bisect the sub-regions in an iterative manner until the the number of domains equals the number of

processors [18]. This method has been used to load balance particle based codes [19]. The hierarchical

domain decomposition [17] also allows for such general domain decompositions by choosing a direction,

decomposing that direction into a number of domains, then decomposing those domains along a per-

pendicular direction and so on. A good review of a large variety of methods for domain decomposition and
load balancing of PIC codes can be found Carmona and Chandler [20].

VORPAL�s domain decomposition is even more general, allowing any domain decomposition that

consists of a collection of slabs. This is done using set theoretical ideas. We have defined the concept of a

VpSlab, which is a logically cubical (bounded by six planes – orthogonal parallelepiped). Each domain is

described by two VpSlab�s, its physical region, physRgn, plus a region that includes a layer of sur-

rounding guard cells, xtndRgn. The physRgn is the region over which the domain must solve the dy-

namics. To do this it must know the field at beginning of the time step in its xtndRgn. Thus the required

communication is that each domain receive the values in its xtndRgn from the processors that have
calculated those cells. Similarly, a processor must send all the cells in its physRgn that belong to another
1

2

3

Fig. 4. The intersection of an extended region with a neighboring domain�s physical region.
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processors xtndRgn. We can see that all that needs to be done is to figure out the intersection of the

domain�s xtndRgn with a neighboring domain�s physRgn. This intersection is itself a VpSlab, and it

contains the cells which the neighboring domain needs to pass to the domain in question. In Fig. 4, the solid
lined rectangles are the physRgn�s of the various domains and the dashed line rectangle is the xtndRgn of

domain 3. The shaded rectangle is the intersection of the xtndRgn of domain 3 with the physRgn of

domain 2. This is the region that domain 2 must pass to domain 3. This method of determining the send and

receive regions allows any domain decomposition that is a sum of slabs. For example, consider simulating a

waveguide connected to a large cavity. The cavity could be broken up in a regular manner while the

waveguide is broken up into a line of slabs in one direction.

Some algorithms require a third VpSlab to be associated with the domain, referred to as the

xtndPlusRgn. This is the same as the xtndRgn except the guard cells need to be two cells thick on
the upper side of the region in all directions. The Zalesak FCT fluid model requires these extra cells to get

the slope of the density for the flux correction. The particles need the current field defined on these extra

cells since a particle that enters an outer cell of the xtndRgn can deposit current to a cell interface in the

xtndPlusRgn. The extra cells are needed only on the upper side since the current associated with a cell is

the current located on the lower cell face.

Load balancing the standard PIC algorithm has in the past required the computational load from the

field solve and the particle push be balanced separately [21]. The reason for this is that all the currents from

the particles must be known before the electromagnetic field is updated and the electromagnetic field must
be known at all points before the particle push is done. If the domains are arranging in a irregular manner

such that the particle load is balanced, the field updates are now unbalanced. One method of dealing with

this issue is the dual-domain decomposition method [22]. In this method, the particles and field have

separate domain decompositions. The computational loads for each update can then be balanced sepa-

rately. This method has the complication that each processor must store the field values it is responsible for

updating, plus any field values that are required for the particle updates. If the particle domains are

considerably different from the field domains, there will be a large redundancy in data storage and excess

communication for the field values that overlap the particle and field domains.
Since VORPAL�s particle and field domains coincide, the only data redundancy and communication that

occur are in the layer of guard cells around each domain. However the PIC algorithm must be modified so

total computational load for each domain can be load balanced rather than balancing the particles and

fields separately. We use an algorithm similar to one used by the ICEPIC code [21,23]. This involves

overlapping the communication and computation between domains at at two different levels. The first is an

internal overlapping in the fluids and fields. By using the VpSlab class one can specify any subregion of the

physRgn. We split the physRgn into an edge region, which is either one or two cells thick depending

on the algorithm being used, and a center region, which consists of all the remaining cells. During an update
the edge region is updated first, as the data of the cells needs to be passed to neighboring domains. After

these cells have been updated, all the sends go out to the neighboring processors. Now the center region is

updated while communication is proceeding, with the message receives done after the all the center cells

have been updated.

By staggering the updates and communication calls of the particles, fluids, and fields in the right manner,

further overlap can be achieved. At each time step, the particles are updated first, and their associated

currents are deposited to the sumRhoJ field, which collects the total charge and current from all the particle

species and charged fluids. The particles that have moved to the domains of other processors are appro-
priately sent. The current contributions to cells in the xtndRgn are sent to the appropriate processors.

Now the fluid updates are performed, with the communication overlap internal as described in the previous

paragraph. The fluid update includes depositing the fluid charge and current to the grid. For the Yee

electromagnetic field, the first half-step update of the magnetic field can be performed, since it does not

depend on the currents. Then the currents are received and the electric field can be updated. Both the
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electric and magnetic updates are overlapped internally as discussed in the previous paragraph. Finally

after all the physics objects have finished their updates, the particles are received. Thus, computation

overlaps communication, and many different types of communication (for field solves, currents, and par-
ticles) are occurring simultaneously. Further overlap might be achieved by receiving and updating sent

particles after the particles currently existing on the processor are updated, but we have not so far found

this necessary. A time line of a VORPAL update showing the order of communication and computation is

shown in Fig. 5.

We ran scaling tests (increasing the number of processors for constant problem size) of VORPAL on the

IBM SP at the NERSC supercomputing center to test its performance in a parallel environment. There are

a variety of reasons that parallel scaling is lost. Amdahl�s law states that parallelism breaks down when the

serial work becomes comparable to the parallel work divided by the number of processors. Another
& currents

update particles
& deposit currents

send particles

update fluids start EM update

finish EM update

receive currents

receive particles

Fig. 5. Time line for VORPAL update showing communication and computation overlap.
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Fig. 6. The inverse time plotted against the number of processors for the 200� 100� 100 cell electromagnetic only scaling run.
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common limiting factor in data decomposed parallel codes is that as the ratio of the number of surface

cells of a domain to number of volume cells gets small, there is less computation to overlap with the

communication.
The first scaling test was an electromagnetic only simulation of 200� 100� 100 cells. In Fig. 6, we show

the scaling as the number of processors varies from 16 to 128. The scaling begins to break down at 64

processors. For larger problems, the scaling extends to a greater number of processors. Fig. 7 shows the

scaling for a VORPAL electromagnetic simulation of 400� 200� 200 cells. For this larger problem good

scaling to 256 processors is observed.

VORPAL scales even better once particles are added. Fig. 8 shows scaling tests for a 200� 100� 100 cell

PIC simulation with 5 particles per cell. The scaling is good to around 512 processors. This better scaling is
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Fig. 7. The inverse time plotted against the number of processors for the 400� 200� 200 cell electromagnetic only scaling run.
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expected as there is more parallel versus serial work when running PIC, and there is more computation

relative to communication; PIC simulations require less communication than pure field simulations, as not

every edge particle crosses the boundary at every time step, but every edge field component must be
communicated to neighboring domains at every time step. We have found for larger problem sizes, PIC

simulations have good scaling past 1000 processors.
5. Available implementations

Multiple models for both the electromagnetics and the plasma exist in VORPAL. Aside from some basic

constraints, such as having only one grid electromagnetic field, both the plasma and the fields can be
represented by multiple models in the same simulation. As an example, a hybrid simulation of optical beam

injection in LWFA could represent the injected particles with a PIC model and the bulk plasma with a fluid

model. There are other possibilities, such as modeling certain species in the plasma with a fluid model and

others with a PIC model. The same is true for the electromagnetics. To study the behavior of a plasma

inside a solenoid, VORPAL can model the solenoid�s field as constant external field but it also solves for the

self consistent field generated by the plasma.

5.1. Electromagnetic field implementations

As we mentioned in Section 2.3, the electromagnetic models all derive from a base class VpEmField,

which defines the basic interface for a electromagnetic field. The basic interface has methods for constructing

and updating the object. It also has methods for obtaining the values of the electric and magnetic fields at a

set of points. A more specific electromagnetic base class, VpGridEmField, assumes that the fields live on

specific points on the grid. It has all the behaviors of the basic model, using interpolation to find the field

values at any point and requiring knowledge of the charge and current density in order to update itself.

Currently there is only one electromagnetic model in VORPAL that inherits from VpGridEmField.
This model uses a finite difference time-domain solver based on Maxwell�s equations using a Yee mesh [24]

to provide second-order accuracy. Faraday�s equation,

oB

ot
¼ �r� E ð3Þ

and the Ampere–Maxwell equation,

oE

ot
¼ c2r� B� j

�0
ð4Þ

are updated through the finite-difference scheme. The remaining Maxwell�s equations,

r � E ¼ q
�0
; ð5Þ
r � B ¼ 0 ð6Þ

need not be solved provided the charge and current densities obey the finite differenced continuity equations

[15], which we assume to be the case.

In the Yee scheme [24] the second-order accurate fields are known at different points within the cell. The

second-order accurate electric field in direction i is known at the midpoint of the cell edge along direction i.
The second-order accurate magnetic field in direction i is known at the center of the cell face orthogonal to

direction i. The second-order accurate charge is at the cell corner, while the second-order accurate currents



Table 1

The position of the electromagnetic field components relative to the lower corner of the cell for a 3D Yee mesh in VORPAL

Component Cell location

E0 (1/2, 0, 0)

E1 (0, 1/2, 0)

E2 (0, 0, 1/2)

B0 (0, 1/2, 1/2)

B1 (1/2, 0, 1/2)

B2 (1/2, 1/2, 0)
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are at the same locations as the electric fields. The specific locations for the components of the electric and

magnetic fields in three dimensions are given in Table 1. This same table gives the cell locations for lower

dimensionality by simply ignoring the unused dimensions. (All three components of the electric and

magnetic fields are kept when simulating 1D or 2D systems.)

To simplify the interpolation for obtaining the field at an arbitrary point in the cell, an intermediate set

of nodal fields are obtained by appropriate averaging of the values on the Yee mesh to obtain values at the

cell corners. For example, the nodal value of Ei is just the Yee value if i exceeds the dimensionality.
Otherwise it is the average of the Yee Ei values of the cell and the cell below. Nodal fields at domain edges

are calculated using Yee field values stored in ghost cells at the edge. These ghost cell values are set ac-

cording to the relevant boundary conditions or by inter-processor communication.

Other non-self consistent electromagnetic models exist for VORPAL to model various types of external

fields. Fields that are constant in space and time and ones that have a specific functional depend on space

and time are available. A electromagnetic model exists that allows one to combine two or more models,

typically a group of externally applied models and a self consistent model. This allows us to pass a single

electromagnetic field to the plasma models.
5.2. Particle implementations

Since fluid models deal with only the bulk velocity of the plasma, they do not incorporate kinetic effects

coming from the distribution of velocities among the particles in a plasma. However, full N-body simu-

lations are not practical, since one cannot simulate enough particles to represent the sizes and densities of

the plasmas we are interested in studying. A common solution to this problem is making use of macro-

particles. Simply put, rather than track the motion of each particle individually, we put the particles into
groups and track the motion of the entire group. This idea can be further improved by having the particle

group density spread out over a region of space centered about its center of mass, rather than having all the

density at a point. The change in the particle momentum is then calculated by considering the impulse from

any relevant forces and the particle position is updated by advanced the particle according to its current

velocity. These models are referred to as Particle-In-Cell (PIC) models [1,2].

For grid EM fields in VORPAL, this requires the field values be interpolated to the location of the

particle group. For the PIC model to be self-consistent, the amount of particle density that crosses each cell

boundary is determined, and the corresponding current is then deposited on the grid. We use the weighting
scheme of Villase nor and Buneman [15] to find these currents. The electromagnetic field is then updated

using these current values.

To ensure computational efficiency in the particle updates, we update particles in groups, and we avoid

virtual functions through use of policy classes. Particle positions and velocities need to updated at each time

step. The details of how these quantities are updated will vary depending on the model. In the traditional

model of inheritance, there would be methods, accel and move, for each of these updates, and these

methods would have to be virtual so that different models could overload them to generate different dy-
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namics. Thus, there could be a cost from the function call, and from the fact that the function is virtual. We

amortize these costs by storing the particles in groups, each of which contains vectors of position vectors

and velocity vectors, and updating those groups. (This has advantages over a single large array when
particles are created and destroyed throughout the simulation.) Still, there remain several calls to the

accel and move methods at every time step.

We further eliminate these computational costs by using policy classes to implement a variety of different

particle dynamics without the disadvantages of using traditional inheritance. Basically the methods

responsible for accelerating and moving the particles are not implemented in the particle class. They are

implemented in a policy class which the particle class is then templated over. In the following pseudo-code,

we see that the acceleration and move are delegated to the methods of the MOVER class, which is the policy

class that determines how the particle velocity and position are updated:

template <class MOVER>
class VpDynSpecies {

void update(double t){
(loop over all particle groups){

...

MOVER::accel(ptclGrp);

...

MOVER::move(ptclGrp);

...

}

}
}

The update method of VpDynSpecies loops over all of its particle groups and calls the accel and

move methods. Since these methods are not virtual they are inlined away by compiler optimizations. This

would allow these methods to be used even on individual particles without loss of performance due to using
a function call.

A policy which accelerates the particles according to an electrostatic model would look something like

the following:

class VpNonRelES {

static void accel(VpPtclGroup ptclGrp){

// v ¼ vþ qEDt
}

}

Therefore VpDynSpecies<VpNonRelES> is a particle class whose particles are updated using an

electrostatic push. Since the policy includes only two methods, one to move the particle and one to ac-

celerate it, adding a new policy class and, hence, a new PIC model is straight forward.

VORPAL currently has several different policy classes to update the particles. A policy, VpFreeRel, for

free streaming particles exists that only updates the particle position, leaving the particle velocity un-

changed. A non-relativistic electrostatic policy class, VpNonRelES, accelerates the particles using only the

electric field. Both relativistic and non-relativistic policies, VpNonRelBoris and VpRelBoris, exist for
the Boris push update, where both the acceleration from the electric field and the velocity rotation from the

magnetic field are determined.

The number of initial macro-particles can be set in the input. One can reduce the numerical noise of the

simulation by raising the number of macro-particles used. Of course this increases the computational load

of the simulation. Another way of reducing the noise is in the initial distribution of the macro-particles.
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Rather than placing the particles on the grid randomly, one can used a so called quiet start distribution that

reduces the noise from the simulation.

5.3. Fluid implementations

The details of VORPAL�s fluid model were driven by the needs of the target simulation of LWFA. In

high intensity laser–plasma interactions the laser comes in from a vacuum region, and the ponderomotive

force can be strong enough to blow out the plasma from regions where it initially existed. Therefore a new

fluid algorithm is needed that can simulate regions of zero density. In many other applications of com-

putational fluid mechanics, the effects of the pressure are important at some level and must be included in

the model [25]. For the laser–plasma interactions that occur in LWFA, thermal effects are not important.
This means we are free to use the cold fluid model for the plasma where the pressure term is neglected. Not

only does this simplify the model, but since there is no pressure term the momentum equation can be re-

written so that the density does not appear anywhere in the equation. This provides a basis for a fluid model

can deal with regions of zero density.

The equations of motion that are most commonly used to describe fluid behavior are the continuity

equation

on
ot

þr � nv ¼ 0 ð7Þ

and the momentum density equation

op

ot
þr � ðpvÞ ¼ qn E

�
þ v

c
� B

�
; ð8Þ

where the momentum density p and the fluid velocity v are related by

p ¼ cmnv ð9Þ

for relativistic fluids. These equations are used because they appear in flux conservative form. Solving

them numerically simply involves determining the flux that is crossing each cell interface and then up-

dating the value in that cell accordingly. However, finding the fluid velocity requires dividing the mo-

mentum density by the fluid density. This requires the fluid density to be non-zero at all points in the

simulation.

Since the cold fluid equations do not involve a pressure term, Eq. (8) can be rewritten by expanding the
second term, using Eq. (7) to remove terms involving derivatives of the density, and then divide by the

density to arrive at

ou

ot
þ v � ru ¼ q

m
E

�
þ v

c
� B

�
; ð10Þ

where u ¼ cv is the relativistic velocity.

Eq. (10) without the Lorentz force term simply describes how the velocity field advects or is moved along
by the fluid flow. By using operator splitting we can separate the velocity update into the advection of the

velocity by the velocity field and the acceleration by the electromagnetic field. The electromagnetic accel-

eration is handled by using the standard Boris push. To determine the momentum advection we simply

calculate the distance, dx, that a cell interface moves during one time step and then shift the velocity values

by a weighted interpolation with dx,

ui !
Dxþ dx

Dx
ui �

dx
Dx

ui�1; ð11Þ
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where Dx is the grid spacing. To achieve second-order accuracy in space, dx is calculated by interpolating

the velocity to the distance dx. After some simple algebra, we arrive at the expression,

dx ¼ �við1� v0dtÞdt; ð12Þ

where vi is the velocity moving into the ith cell and v0 is the slope of the velocity between the two cells.

Since Eq. (7) is in flux conservative form, flux transport can be used to do the density update. A naive

approach to determining the particle flux at the cell boundaries would be to again determine the distance,

dx, that the cell interface moves in one time step. This is done in a similar fashion to the velocity ad-

vection, but with the vi being replaced with the average velocity between the cells �v. The expression for dx
is now,

dx ¼ ��vð1� v0dtÞdt; ð13Þ

where �v is

�v ¼
viþviþ1

2
if vi < 0;

vi�1þvi
2

if vi > 0:

�
ð14Þ

This along with the cross-sectional area of the cell determines the volume that moves from one cell to the

next. By finding the average density in this volume we now have the density that moves from one cell to the

next

Dniþ1=2 ¼ �n
�

þ n0
dx
2

�
dx; ð15Þ

where Dniþ1=2 is the density flowing from the ith cell to the iþ 1 cell. �n and n0 are defined in the same way as
�v and v0. The corresponding flux between cells is given by dividing Dniþ1=2 by the grid spacing perpendicular

to the cell face. The flux is used to determine the current crossing the cell interface.

This naive approach gives a charge conserving algorithm. However, if the density difference between

the two cells is large enough, then the density in the one cell can achieve a non-physical negative value. To

combat this problem in our original algorithm, we limit the density leaving a cell to a certain fraction of

the original density in the cell. By setting that fraction to a half, we guarantee the density in the cell will
never go negative.

Despite the crudeness of the flux limitation for this algorithm, we find it gives reasonable results. There

are other problems with this approach. Our algorithm does preserve positivity, but it does not preserve

monotonicity. This means that although we prevent the density from going negative we do not prevent the

formation of new non-physical extrema that result from numerical anti-diffusion. In order to preserve both

positivity and monotonicity we further improve the algorithm by using Zalesak�s implementation [26] of

Boris and Book�s flux corrected transport (FCT) [27]. The basic idea is to first calculate the flux with a first-

order algorithm that is known to be positive definite and monotonic. Then higher-order corrections are
determined. Then the higher anti-diffusion of the higher-order flux is limited to just prevent the generation

of new extrema.

To implement this algorithm, we separate the first-order part of our original algorithm from the higher-

order corrections. The separation occurs by considering the first- and second-order parts of the dx sepa-

rately and rewriting the average density �n as the density of the ‘‘source’’ cell plus a correction,

�n ¼ ni þ
Dx
2
n0: ð16Þ

We can now apply Zalesak�s FCT algorithm.
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6. Code validation

VORPAL has been rigorously tested to ensure it produces accurate, meaningful results. A series of
regression tests are included with VORPAL to validate the code and ensure consistency when the code is

updated. The code has reproduced a variety of known results, including the paraxial approximation of a

laser pulse propagating in vacuum and the generation of a plasma wake field by a short, high intensity laser

pulse. Here we show one regression test, the validation that VORPAL correctly produces longitudinal

plasma oscillations for a Gaussian potential,

/ ¼ /0 exp

�
� x2 þ y2

2r2

�
: ð17Þ

Poisson�s equation gives the corresponding electron charge density for this field. The electric field is then
initialized to the field described by this potential and the associated plasma density is initialized to a

constant density plus the density that corresponds to the potential. The corresponding physical situation is

a neutral plasma, where the motion of the positive charge carriers are neglected, and the electron density

has a small perturbation that generates the electrostatic potential given by Eq. (17). The perturbation will

generate a small amplitude plasma oscillation whose frequency can be compared with linear plasma theory.

Neglecting magnetic and thermal effects, the angular plasma frequency for a small amplitude oscillation in

an electron plasma is given by

xp ¼
n0e2

�0me

� �1=2

; ð18Þ

where n0 is the density of the plasma.

To produce a perturbation in the particles that corresponds to the Gaussian potential in Eq. (17), a small

displacement is added to the positions of the particles when they are loaded into the simulation,

~x0 ¼~xþ~nð~xÞ; ð19Þ

where ~x0 is the new position to load particle and ~x is the position from a loading method that

generates a uniform density. It is easy to show that if ~n is the gradient of some potential function,
then the charge density produced by this particle distribution satisfies Poisson�s equation for this

potential.

An unperturbed plasma density of 1� 10�15 m�3 gives a angular plasma frequency, xp of 1:784� 109

rad/s and a plasma wavelength, kp of approximately 1 m. A square region 10 m on a side with 100 grid

points per side gives a space that is 10 plasma wavelengths long with 10 grid points per plasma wavelength.

The plasma is represented with macro-particles using 30 particles per cell. To comply with the Courant

condition the time step is chosen to be 2:25� 10�10 s, and the simulation is run for 75 steps corresponding

to approximately 5 plasma oscillations. The electric field and particle positions are initialized to correspond
to a potential with /0 ¼ 0:001 V and r ¼ 1 m. This corresponds to a peak density perturbation of about

0.2% of the bulk plasma density.

In Fig. 9 we plot the value of the electric field at one of its spatial extrema as a function of time. The

data is then fitted to a simple cosine to determine the frequency of the oscillation. The fitted plasma

frequency is found to be 1:791� 109 rad/s which compares well with the predicted frequency of

1:784� 109 rad/s. A similar simulation was done using the simple fluid model that is included with

VORPAL. The same potential was used but the fluid density is initialized directly. Using the same pa-

rameters a plasma frequency of 1:792� 109 rad/s was found, again in good agreement with the predicted
results.
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Fig. 9. The electric field versus time for the PIC validation simulation. The diamonds are the data and the line is the fit.
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7. Hybrid simulation of laser wake field acceleration

The LWFA is an example of a situation where a hybrid PIC/fluid simulation would be useful, since the
beam and the plasma oscillations that generate the accelerating wake field are in some sense separate en-

tities (see Fig. 10). The beam itself is best modeled by a collection of macro-particles, but by modeling the

wake field with a fluid, one can avoid the noise that is associated with modeling the bulk plasma with PIC

and reduce the computational requirements of the simulation.
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Fig. 10. The initial particle distribution and fluid density used for a hybrid LWFA simulation. The dashed line is the density profile of

the particles, and the solid line is the density distribution for the fluid.
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In the beat-wave (or colliding-pulse) injection scheme [28] for Laser Wake Field Acceleration (LWFA),

three laser pulses are fired into the plasma. The first pulse, referred to as the pump pulse, is responsible for

generating the wake field. The remaining two pulses are used to kick particles up to an energy that puts
them traveling in phase with the wake field for subsequent acceleration. This injection works by firing two

counter propagating pulses with polarization perpendicular to the pump pulse. One pulse trails the pump

pulse at a distance that puts it in the accelerating region of the wake field. The second injection pulse is

launched from the other side of the plasma. Since injection pulses have a polarization perpendicular to the

pump pulse, the second injection pulse passes through the pump pulse with minimal nonlinear interaction

due to the plasma. When it reaches the other injection pulse the two pulses beat. This generates a short lived

large electric field and a beat potential that inject the beam particles into the wake field.

To perform a hybrid simulation of this situation we model the front of the plasma with a collection of
particles long enough that injection occurs with this region. Past this region the plasma is then modeled by a

fluid. When injection occurs the particles that represent the beam are traveling near the speed of light so

they will remain in the simulation after the moving window is active. The remaining particles will leave the

simulation as the window shifts the plasma, moving the wake field into the region where it will be modeled

by the fluid. Although initially the computational cost of such a hybrid simulation is greater than a simple

PIC simulation, once the moving window moves the bulk of the particles out of the simulation, only the

beam particles are being updated. So the hybrid simulation reduces computational cost for long runs and

reduces the noise in the simulation since the bulk of the plasma is being modeled by a fluid.
A simple hybrid simulation shows that VORPAL�s ability to use multiple models to represent the plasma

gives it the capacity to perform these hybrid simulations. To arrive at a plasma wavelength (c=fp) of 40 lm
we set the plasma density to be 6:97� 1023 m�3. The pump pulse and the right traveling colliding pulse are

launched into vacuum from the left boundary in what we refer to here after as the x-direction, and the right

traveling pulse is created adiabatically within the plasma. All the pulses have a half cosine profile in the

direction of propagation and are Gaussian in the transverse direction so the electric field has the following

functional form,

Ei ¼
mecxai

e
cosðpðx� xi � vgitÞ=2LiÞ expðy2=2w2Þ cosðkix� xitÞ ð20Þ

for jx� xi � vgitj < Li where the subscript i is either p for the pump pulse (with the ) sign in the argument of

the last cosine), which creates the accelerating wake field, f for the forward pulse, or b for the backward

pulse (with the + sign in the argument of the last cosine). The length of the pulse is Li, and the rms width of

the pulse is wi.

We take the rms length of the pump pulse, Lp to be half the plasma wavelength and the lengths of the two
colliding pulses to be half a plasma wavelength. The rms width of the pump pulse is 21.2 lm, and the width

of the colliding pulse are again half as much. The wavelength of the pump pulse and the backward moving

colliding pulse is 8 lm and the wave length of the forward moving colliding pulse is 8.3 lm so the two

colliding pulses will beat. The backward moving pulse is created adiabatically centered at 155 lm so the

plasma can respond correctly the laser fields, and the forward moving pulse trails the pump by 55 lm
measured center to center. This ensures that injection will occur at an accelerating and focusing region in

the wake field. The plasma starts at zero and rises as a half cosine to the bulk density over 80 lm. The

plasma is represented by particles for the next 100 lm, so the injection pulses collide in a region represented
by particles. Following this region is a transition region of 20 lm where the particle density drops as the

fluid density rises. After we have a constant fluid density.

In Fig. 11, we see the x-component of the relativistic velocity (cv) of the particles plotted against their x

positions. A beam has clearly been formed and accelerated to an energy of approximately 14 MeV in less

than half a millimeter. At this point in the simulation the initial particle region has been moved out of the

simulation by the moving window, and only the particles traveling near the speed of light are present. In
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Fig. 11. The relativistic velocity in the x-direction of the particles for the hybrid colliding pulse simulation plotted in the x-direction.
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Fig. 12. The relativistic velocity in the x-direction of the particles for the hybrid colliding pulse simulation plotted in the y-direction.
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Fig. 12 we see the x-component of the relativistic velocity plotted against their y positions. Here we see the

beam is localized in both transverse and longitudinal directions. We also note that in both cases additional

beams form besides the ones injected by the colliding pulses. This is the result of another injection scheme

called phase kick injection, details of which can be found elsewhere [29].
While such hybrid simulations are possible, we have found that they do not yet work well for highly

asymmetric cells, as are required for laser pulses containing a large number of wavelengths. Asymmetric

cells are known to be problematic in fluid numerics. Thus, the use of hybrid simulations for extreme cases

appears to require algorithm development.
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8. Summary and future directions

Using object-oriented programming and other modern computing techniques, we have developed a
highly flexible plasma simulation code, VORPAL. VORPAL can incorporate multiple implementations for

the electromagnetic field. For the plasma there are both fluid and particle implementations. In addition,

VORPAL can be run in any dimensionality, with the dimension chosen at run time. VORPAL also has a

flexible domain decomposition into an arbitrary set of slabs. VORPAL is built with the GNU configure

tools, and, thus, it runs on a variety of platforms.

VORPAL is now in use as a plasma simulation code with multiple implementations. The electromagnetic

field can be an FDTD field on a Yee mesh, a prescribed field, or any combination of those. Particle im-

plementations with relativistic, non-relativistic, and electric force only are available. Two fluid imple-
mentations are available.

The various implementations in VORPAL have been validated. It was shown to give the correct results

for plasma oscillations. In hybrid mode VORPAL was shown to correctly produce the wake field generated

by a laser pulse propagating in a plasma, and it was capable of simulating beam injection via colliding laser

pulses.

A variety of future projects are possible with VORPAL. The addition of an implicit Maxwell solver [30]

would allow simulation of systems in which light waves are not important. An implicit fluid solver could

remove the electron plasma oscillations. In combination, these directions should allow VORPAL to be used
to model low-frequency plasma phenomenon such as RF heating of fusion plasmas. The addition of

complex boundary conditions would allow studies of microwave cavities, and the addition of ionization

would make it a strong plasma processing code. Studies of beam cooling using a fast multipole method for

the fields have already begun.
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